来源:中国科学院近日,中国科学院近代物理研究所自主研制的我国首套铜铌复合腔高稳定超导加速单元成功通过各项测试,标志着面向高可靠应用的铜铌复合超导腔技术研究取得了重要进展。这一成果有望为基于射频超导加速器的大科学装置建设提供高性价比、高可靠性的技术方案。该超导加速单元由9支半波长型铜铌复合超导腔组成。在4.2 K的低温测试环境中,铜铌复合超导腔的平均表面峰值电场达到35 MV/m,平均腔体频率洛伦兹失谐系数和平均腔体频率氦压敏感系数分别降至约-4.9 Hz/(MV/m)2和-2.9 Hz/mbar,是原纯铌超导腔单元对应值的50%和15%,各项性能优于原纯铌超导腔加速单元。超导直线加速器在高通量中子源、高通量中微子源、高通量缪子源等兆瓦级高功率离子束应用中具有优势。针对传统纯铌超导腔的长期运行稳定性和可靠性不足的问题,该团队提出了新的复合材料技术路线,攻克了铜铌界面材料难以互溶、复杂曲表面覆高品质厚铜层等技术难关,推动了射频超导技术与增材制造技术的深度融合。研究验证了铜铌复合腔超导加速单元在提高超导加速器运行稳定性方面的优势;与依赖昂贵2K液氦系统进行制冷的传统纯铌超导腔相比,铜铌复合腔超导加速单元展现出在运行环境适应性和成本控制方面的优势。铜铌复合腔超导加速单元能够在4.2 K液氦环境稳定运行,有望大幅降低超导加速单元的制冷成本,为超导加速器的工业化应用提供更经济且高效的技术方案。
发布时间:
2025
-
01
-
06
浏览次数:95
来源:新疆理化技术研究所近期,中国科学院新疆理化技术研究所的研究团队在氟化硼酸盐的深紫外非线性光学性能方面取得了重要进展,提出了一种通过共价键合氟优化硼氧框架的新策略,为新型光学材料的设计提供了理论依据。氟化硼酸盐因其丰富的结构多样性和组装模式,成为探索深紫外非线性光学材料的优势体系。然而,具有B-F键合的氟化基元影响结构及性能的内在规律尚不清晰。中国科学院新疆理化技术研究所晶体材料研究中心系统分析了系列氟化硼酸盐双折射率及倍频效应,发现氟化硼酸盐的非中心性和非线性光学性能主要来源于B-O/F子晶格的结构及性能特征(图1)。氟的引入通过聚合诱导效应和剪刀效应修饰与优化B-O骨架,有利于光学性能的提升。通过对氟化硼酸盐倍频效应的轨道分析,该团队揭示了氟化硼酸盐倍频效应的非中心对称子晶格带边轨道分布机制,即形成于非中心对称子晶格并出现在能带边缘的轨道将主导二次谐波的产生。另外,共价键合氟的聚合诱导效应和剪切效应优化了轨道的分布。总之,氟化硼酸盐倍频的贡献主要受氧非键轨道的支配,氟也有明显的直接贡献,从而揭示了非中心对称子晶格带边轨道分布机制。从轨道层面上阐明了氟化硼酸盐倍频效应的物理机制,证明了共价键合氟的贡献。该研究为深紫外非线性光学性能优化提供了新的视角,也为未来新型光学材料的设计与开发奠定了基础。相关研究成果以通讯的形式发表在《科学通报》(Sci. Bull.,?2024,?69...
发布时间:
2025
-
01
-
02
浏览次数:134
发布时间:
2024
-
12
-
31
浏览次数:246
近期,中国科学院上海光学精密机械研究所先进激光与光电功能材料部激光晶体研究中心杭寅研究员团队在Pr3+浓度对Pr:LaF3晶体性能的影响方面取得新进展,相关研究成果以“Effects of Pr3+ doping concentration on optical properties of LaF3 crystal”为题发表于Optics and Laser Technology.阅读原文
发布时间:
2024
-
12
-
31
浏览次数:180