来源:清华大学出版社期刊中心
文章DOI:10.26599/JAC.2025.9221061
ResearchGate: https://www.researchgate.net/publication/389719332_Lowering_operating_temperatures_in_high-power_laser-excited_LuAGCe_films_through_improving_crystallinity_and_increasing_Ce_3_content
1. 引子:激光照明为何“热”情难挡?
想象一下,未来的汽车大灯能在黑夜中点亮数百米的前路,投影仪能在白天投射出清晰绚丽的画面——这一切都离不开激光照明技术的高亮度与长寿命。然而,高功率激光的“热情”却带来了一个棘手问题:荧光材料在强光下温度飙升,发光效率下降,甚至“罢工”。热管理成了拦路虎,怎么办?
我们团队在《Journal of Advanced Ceramics》上发表的最新研究给出了答案:通过“双管齐下”优化LuAG:Ce荧光薄膜,我们不仅让它在高功率激光下“冷静”了近100 °C,还大幅提升了发光性能。这项突破或许将成为激光照明迈向实用化的关键一步,点亮汽车照明、高端显示等领域的未来!
2. 背景:热与光的“拉锯战”
激光照明被誉为下一代照明技术“扛把子”,亮度高、寿命长,远超传统LED。然而,高功率激光激发下,荧光材料容易“热过头”,导致发光效率下滑、颜色失真,甚至材料烧毁。过去,学者们尝试加装散热装置或调整材料配方,虽然能降温,却往往牺牲了发光亮度,像是“按下葫芦浮起瓢”。
我们决定另辟蹊径:能不能让材料本身既“冷静”又“闪耀”?答案藏在LuAG:Ce薄膜的微观世界里。通过同步调控它的结晶度和Ce3+含量,我们找到了一条热管理和发光性能双赢的路,彻底打破传统技术的瓶颈。这不仅是一场材料的革新,更是为高功率激光照明量身定制的“降温秘方”。
3. 亮点:降温+增效,一箭双雕
这项研究的“硬核”成果可以用几个数字和事实概括:
(1)结晶度提升,温度骤降:把薄膜结晶度从75.5%提高到87.4%,在18 W/mm2激光激发下工作温度降低了惊人的95.6 °C。
(2)Ce3+加码,再降20 °C:采用CO气氛退火,将Ce3+含量从35.9%提升到46.1%,不仅温度再降20 °C,发光效率还飙升73.2%。
(3)稳定如磐石:在13 W/mm2激光轰击下,薄膜温度30秒内稳定在140 °C,光通量1800秒后仍保持87.1%的初始值,热稳定性和发光持久性堪称一流。
简单来说,我们让LuAG:Ce薄膜在高功率激光激发下既能“冷静思考”,又能“光芒四射”,为激光照明器件的设计提供了新灵感。
4. 怎么做到的?解锁“材料魔法”
(1)喷雾热解,精雕细琢:我们用喷雾热解法在蓝宝石基底上打造出22.17 μm厚的LuAG:Ce薄膜。这方法无需复杂设备,就能精确控制厚度、实现大面积沉积,堪称“量产友好型”。
(2)结晶度“升级”:通过1100-1500 °C的空气退火,薄膜从无序的“非晶态”变为高结晶度的LuAG结构。结晶度越高,热量散得越快,发光也更强。
(3)CO退火“点睛”:在1500 °C下用CO气氛退火,成功抑制Ce3+氧化,把更多Ce4+“变”成发光主力Ce3+。结果蓝光吸收率和转换效率双双提升,热量减少,发光更亮。
这些“魔法”让薄膜在高功率激光激发下如鱼得水,不仅温度低到“冷酷”,还亮得“耀眼”。
意义:照亮未来的“火种”
这项研究不仅解决了激光照明的高温难题,还为材料设计提供了新思路。LuAG:Ce薄膜的低工作温度、高发光效率和超强稳定性,让它在汽车大灯、激光投影、医疗照明等领域大有可为。未来,我们期待这项技术从实验室走向市场,点亮更多生活场景。
7. 结语:让光更亮,让热退散
从实验室到现实,激光照明的每一步都在挑战极限。我们用结晶度和Ce3+含量这两把“钥匙”,解锁了LuAG:Ce薄膜的热光潜能。想了解更多细节?欢迎查阅《Journal of Advanced Ceramics》原文(DOI: 10.26599/JAC.2025.9221061),一起见证这场“冷静发光”的材料革命!