来源:X-MOL
稀土元素的催化性能高度依赖于其4f电子态,然而4f电子的调控长期面临多重挑战:4f轨道处于原子内层,受外层5s、5p电子的强烈屏蔽,难以与外界环境有效耦合;其电子云分布高度局域化,晶体材料的有序晶格结构严格限制了4f电子的动态行为,传统的晶体掺杂或缺陷工程难以打破这种局域性,此外,高浓度Ce3+易引发相变(如CeO2→Ce2O3),造成材料失活。
针对这一难题,北京航空航天大学郭林教授(点击查看介绍)、刘利民教授(点击查看介绍)团队及合作者提出了一种创新策略:通过异质离子掺杂诱导CeO2非晶化,打破晶体对称性对4f电子的束缚,实现4f电子态的有效调控和Ce3+含量的显著提升。
该非晶化策略的关键在于破坏传统CeO2晶体中1.png对称性的有序结构。在该晶体中,每个氧原子通常与四个铈原子配位(OⅣ),形成高度稳定的结构。研究团队通过引入B掺杂,使每个B原子与三个O原子结合,形成平面结构的BO33-基团。这种结构单元不仅削弱了原有的Ce–O键,诱导形成大量三配位氧(OⅢ),同时也破坏了晶体对称性,成功促使CeO2发生非晶转变。第一性原理计算表明,B掺杂引起的结构畸变在CeO2带隙中引入了f轨道中间态,增强了Ce4+向Ce3+的还原趋势,且Ce3+比例随B含量增加而升高。当B掺杂量达到7.69%时,Ce3+含量可高达75%。
为实现这一目标,研究团队采用湿化学法,以氧化石墨烯作为基底制备了B掺杂、表面平整厚度约5.3 nm的非晶CeO2纳米片。EDS结果确认Ce、B、C和O元素分布均匀,FTIR光谱进一步证实B以BO3基团形式存在于材料中。
通过调控B掺杂的含量(1.9%~7.5%),可以实现对CeO2/GO纳米片非晶化程度的精准控制。XPS、L边XANES和M边XANES分析表明,随着B掺杂含量的提升,Ce3+比例持续上升,结果与理论预测高度一致。XPS定量结果显示,Ce3+比例可由48.2%提升至85.7%,说明该非晶化策略有效拓宽了电子态调控范围。此外,非晶无序结构进一步抑制了氧空位的再氧化,使Ce3+在空气中暴露60天后仍保持稳定,解决了晶体材料易相变的缺陷。
非晶化策略不仅优化了材料微观结构,更显著提升了光响应与催化性能。紫外-可见漫反射光谱表明,非晶化使材料带隙从2.86 eV降至2.42 eV,大幅拓宽了可见光吸收范围。时间分辨光致发光衰减测试结果显示,光生载流子寿命从8.8 ns延长至15.77 ns,瞬态光电流强度显著增大,表明电荷分离效率的显著提升。
在低浓度CO2光催化还原测试中,B-7.5%催化剂展现出卓越性能:15% CO2浓度下,CO生成速率达249.33 μmol·g-1·h-1,选择性100%;即使CO2浓度降至1%,速率仍可保持103.4 μmol·g-1·h-1,远超同类催化剂。
本研究首次系统地验证了非晶化策略对稀土4f电子态调控的可行性,突破了传统晶体结构中对电子态的对称性限制,显著拓宽了4f电子的调控范围。该策略不仅实现了在低浓度条件下对CO2的高效光催化还原,也为稀土纳米材料的结构设计与性能优化提供了全新思路。
这一成果近期发表在Angewandte Chemie International Edition 上。